

Automatic Semantic Priming in Alzheimer's Disease: A Systematic Review

Larissa M. Jordan, M.S., M.A., CCC-SLP; Karen Bryant, Ph.D., CCC-SLP; Meredith Saletta, Ph.D., CCC-SLP; & Mary Otto
University of Iowa

Introduction

- Healthy individuals respond more quickly to semantically related words than to unrelated words during a lexical decision task called *semantic priming*
 - CAT DOG (Related Words)
 CAT PEN (Unrelated Words)
- Some individuals with Alzheimer's disease (AD) exhibit abnormally increased priming effects, known as *hyperpriming* (Giffard, Laisney, Desgranges, & Eustache, 2015), but other studies have not shown this (Predovan et al., 2014)
- The last systematic review about this conflicting evidence was over 15 years ago (Ober, 2002)

<u>Methods</u>

- We searched 5 databases:
 - CINAHL Plus
 - PubMed
 - PsycINFO
 - Scopus
 - ProQuest Dissertations & Theses
- Database searches were completed on January 27, 2018 and searched for new publications on June 18, 2018
- Two reviewers independently examined titles, abstracts, and full-text for all databases

Methods (cont.)Inclusion CriteriaExclusion CriteriaIndividuals with
Alzheimer's diseaseStimuli that were auditory instead
of writtenSemantic priming withSummaries or book chapters

prime – target only

Stimulus onset asynchrony
(SOA) of < 400 ms

without new findings

Articles not written in English

Systematic Record of Article Selection

Taken from Moher et al., 2009

Results

The objective of this systematic review was to determine the frequency of occurrence of hyperpriming during automatic semantic priming tasks in individuals with AD

Hyperpriming Findings in Analyzed Articles

1 st Author	Year	AD ^a n	SOAb	Response	Hyper- priming?
(1) Bell	2001	10	250	Spoken	No*
(2) Bushell	1997	16	250	Spoken	No
(3) Giffard	2015	15	250	Button Push	Yes
(4) Giffard	2009	26	250	Button Push	Yes
(5) Giffard	2008	17	250	Button Push	No
(6) Giffard	2002	24	250	Button Push	Yes
(7) Giffard	2001	53	250	Button Push	Yes
(8) Hernandez	2008	36	250	Button Push	No
(9) Laisney	2011	16	250	Button Push	No
(10) Ober	1991	17	250	Spoken & BP	No
(11) Perri	2011	20	350	Button Push	Yes
(12) Perri	2003	21	300	Button Push	Yes
(13) Predovan	2014	7	350	Button Push	No
(14) Shenaut	1996	32	250	Button Push	No
(15) Silveri	1996	15	250	Button Push	No

^aAlzheimer's disease; ^bStimulus Onset Asynchrony in ms *Seen, but not statistically significant

Selected Semantic Relationship Examples

Semantic Relationship	Prime	Target
Category coordinate (high association)	Tiger	Lion
Category coordinate (low association)	Cow	Donkey
Attribute	Tiger	Stripe
Superordinate-subordinate	Travel	Drive

Conclusions

- Individuals with AD do not exhibit any semantic priming on motion verbs², unemotional abstract words³, distinctive attributes9, or famous people¹³
- Priming, but not hyperpriming, occurs for emotional abstract words³, shared attributes⁵⁻⁷, superordinate-subordinate¹⁰, and varying typicality¹⁰
- Disease severity impacts hyperpriming in semantic relationships like category coordinates^{1-12,14&15} causing it to be a transient occurrence⁶

<u>Selected Literature Cited</u>

- Giffard, B., Laisney, M., Desgranges, B., & Eustache, F.
 (2015). An exploration of the semantic network in
 Alzheimer's disease: Influence of emotion and
 concreteness of concepts. Cortex: A Journal Devoted to
 the Study of the Nervous System & Behavior, 69, 201-211.
- Moher, D., Altman, D., Liberati, A., & Tetzlaff, J. (2011).
 PRISMA Statement. *Epidemiology*, 22(1), 128.
- Ober, B. A. (2002). RT and non-RT methodology for semantic priming research with Alzheimer's disease patients: a critical review. *Journal of Clinical and* Experimental Neuropsychology, 24(7), 883-911.
- Predovan, D., Gandini, D., Montembeault, M., Rouleau, I., Bherer, L., Joubert, S., & Brambati, S. M. (2014). Loss of person-specific knowledge in Alzheimer's disease: Evidence from priming. *Neurocase*, 20 (3), 263-268.

<u>Disclosures</u>

Larissa M. Jordan: None to report Karen Bryant: None to report Meredith Saletta: None to report Mary Otto: None to report